If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-44x+20=0
a = 1; b = -44; c = +20;
Δ = b2-4ac
Δ = -442-4·1·20
Δ = 1856
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1856}=\sqrt{64*29}=\sqrt{64}*\sqrt{29}=8\sqrt{29}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-44)-8\sqrt{29}}{2*1}=\frac{44-8\sqrt{29}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-44)+8\sqrt{29}}{2*1}=\frac{44+8\sqrt{29}}{2} $
| –3h=819 | | 9d–3=2d+14 | | 2x^2-5x-12=77*40 | | 1/4y=(60-(10(16÷4) | | x+218=0 | | 93x+89=97x-13 | | s÷4=10 | | 32+24=85x-34 | | 29+32=17x-23 | | 10z+8(z(15-5)=810 | | -y/3.1+0.7=1.7 | | 17x+73=12x+16 | | 12x-17=23x-59 | | 4(2x+1)=5x+6 | | 91x+23=81x+37 | | 5(q+7)=350 | | 135x+10=180 | | g/7=-7 | | x/3-300=259 | | 7+20=4x+14+2x+23 | | 26x+14=39x-23 | | -9(-10i-3)=36 | | x-9/15=2x-9/36 | | 0.1475=x-15.50+1.20/15.50 | | 180-(2x/30)=0 | | 2z=-3.8 | | 4(28/11)-b=11 | | 4(28/11)-11=b | | 10000=(3.14)(12)^(2)(h) | | 6i-4(2i-6)=0 | | 6.75=3f | | p+5.9=-9.38 |